
Manipulate Times, Dates, and Time

Spans

Table of Contents
➢ Introduction

➢ Python datetime Classes

➢ Creating Date Objects

➢ Extract Year and Month from the Date

➢ Handling Date and Time Strings with strptime() and strftime()

➢ Getting Day of the Month and Day of the Week from a Date

➢ Getting Hours and Minutes From a Python Datetime Object

➢ Getting Week of the Year from a Datetime Object

➢ Find the Difference Between Two Dates and Times

➢ Formatting Dates: More on strftime() and strptime()

➢ Handling Timezones

➢ Working with pandas Datetime Objects

➢ Conclusion

Introduction
Dealing with dates and times in Python can be a hassle. Thankfully, there’s a built-in way

of making it easier: The Python datetime module.

datetime helps us identify and process time-related elements like dates, hours, minutes,

seconds, days of the week, months, years, etc. It offers various services like managing time

zones and daylight savings time. It can work with timestamp data. It can extract the day

of the week, day of the month, and other date and time formats from strings.

In short, it’s a really powerful way of handling anything date and time related in Python.

So, let’s get into it!

Python datetime Classes
Before jumping into writing code, it’s worth looking at the five main object classes that

are used in the datetime module. Depending on what we’re trying to do, we’ll likely need

to make use of one or more of these distinct classes:

• datetime – Allows us to manipulate times and dates together

(month, day, year, hour, second, microsecond).

• date – Allows us to manipulate dates independent of time (month,

day, year).

• time – Allows us to manipulate time independent of date (hour,

minute, second, microsecond).

• timedelta— A duration of time used for manipulating dates and

measuring.

• tzinfo— An abstract class for dealing with time zones.

If those distinctions don’t make sense yet, don’t worry! Let’s dive into datetime and start

working with it to better understand how these are applied.

Creating Date Objects
First, let’s take a closer look at a datetime object. Since datetime is both a module and

a class within that module, we’ll start by importing the datetime class from

the datetime module.

Then, we’ll print the current date and time to take a closer look at what’s contained in

a datetime object. We can do this using datetime‘s .now() function. We’ll print our

datetime object, and then also print its type using type() so we can take a closer look.
import datetime class from datetime module

from datetime import datetime

get current date

datetime_object = datetime.now()

print(datetime_object)

print('Type :- ',type(datetime_object))

Output:
2019-10-25 10:24:01.521881

Type :-

We can see from the results above that datetime_object is indeed a datetime object

of the datetime class. This includes the year, month, day, hour, minute, second, and

microsecond.

Extract Year and Month from the Date
Now we’ve seen what makes up a datetime object, we can probably guess

how date and time objects look, because we know that date objects are just

like datetime without the time data, and time objects are just like datetime without

the date data.

We can also antipate some problems. For example, in most data sets, date and time

information is stored in string format! Also, we may not want all of this date and time data

— if we’re doing something like a monthly sales analysis, breaking things down by

microsecond isn’t going to be very useful.

So now, let’s start digging into a common task in data science: extracting only the

elements that we actually want from a string using datetime.

To do this, we need to do a few things.

Handling Date and Time Strings with

strptime() and strftime()
Thankfully, datetime includes two methods, strptime() and strftime(), for

converting objects from strings to datetime objects and vice versa. strptime() can

read strings with date and time information and convert them to datetime objects,

and strftime() converts datetime objects back into strings.

Of course, strptime() isn’t magic — it can’t turn any string into a date and time, and it

will need a little help from us to interpret what it’s seeing! But it’s capable of reading most

conventional string formats for date and time data (see the documentation for more

details). Let’s give it a date string in YYYY-MM-DD format and see what it can do!
my_string = '2019-10-31'

my_date = datetime.strptime(my_string, "%Y-%m-%d") # yyyy-mm-dd

print(my_date)

print('Type: ',type(my_date))

Output:

2019-10-31 00:00:00

Type:

Note that strptime() took two arguments: the string (my_string) and "%Y-%m-%d",

another string that tells strptime() how to interpret the input string my_string. %Y,

for example, tells it to expect the first four characters of the string to be the year.

A full list of these patterns is available in the documentation, and we’ll go into these

methods in more depth later in this tutorial.

You may also have noticed that a time of 00:00:00 has been added to the date. That’s

because we created a datetime object, which must include a date and a

time. 00:00:00 is the default time that will be assigned if no time is designated in the

string we’re inputting.

Anyway, we were hoping to separate out specific elements of the date for our analysis.

One way can do that using the built-in class attributes of a datetime object,

like .month or .year:
print('Month: ', my_date.month) # To Get month from date

print('Year: ', my_date.year) # To Get month from year

Output:
Month: 10 Year: 2019

https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior
https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior

Getting Day of the Month and Day of the

Week from a Date
Let’s do some more extraction, because that’s a really common task. This time, we’ll try to

get the day of the month and the day of the week from my_date. Datetime will give us

the day of the week as a number using its .weekday() function, but we can convert this

to a text format (i.e. Monday, Tuesday, Wednesday…) using the calendar module and a

method called day_name.

We’ll start by importing calendar, and then using .day and .weekday() on my_date.

From there, we can get the day of the week in text format like so:
import calendar module

import calendar

print('Day of Month:', my_date.day)

to get name of day(in number) from date

print('Day of Week (number): ', my_date.weekday())

to get name of day from date

print('Day of Week (name): ', calendar.day_name[my_date.weekday()])

Day of Month: 31 Day of Week (number): 3 Day of Week (name): Thursday

Wait a minute, that looks a bit odd! The third day of the week should be Wednesday, not

Thursday, right?

Let’s take a closer look at that day_name variable using a for loop:
j = 0

for i in calendar.day_name:

 print(j,'-',i)

 j+=1

Output:
0 - Monday 1 - Tuesday 2 - Wednesday 3 - Thursday 4 - Friday 5 - Saturday 6 -

Sunday

Now we can see that Python starts weeks on Monday and counts from the index 0 rather

than starting at 1. So, it makes sense that the number 3 is converted to “Thursday” as we

saw above.

Getting Hours and Minutes From a Python

Datetime Object
Now let’s dig into time and extract the hours and minutes from datetime object. Much

like what we did above with month and year, we can use class

attributes .hour and .minute to get the hours and minutes of the day.

Let’s set a new date and time using the .now() function. As of this writing, it’s October

25, 2019 at 10:25 AM. You’ll get different results depending on when you choose to run

this code, of course!
from datetime import datetime todays_date = datetime.now()

to get hour from datetime

print('Hour: ', todays_date.hour)

to get minute from datetime

print('Minute: ', todays_date.minute)

Output:

Hour: 10 Minute: 25

Getting Week of the Year from a Datetime

Object
We can also do fancier things with datetime. For example, what if we want to know what

week of the year it is?

We can get the year, week of the year, and day of the week from a datetime object with

the .isocalendar() function.

Specifically, isocalendar() returns a tuple with ISO year, week number and weekday.

The ISO calendar is a widely-used standard calendar based on the Gregorian calendar.

You can read about it in more detail at that link, but for our purposes, all we need to know

is that it works as a regular calendar, starting each week on Monday.
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

todays_date.isocalendar()

Output:

(2019, 43, 5)

Note that in the ISO calendar, the week starts counting from 1, so here 5 represents the

correct day of the week: Friday.

We can see from the above that this is the 43rd week of the year, but if we wanted to

isolate that number, we could do so with indexing just as we might for any other Python

list or tuple:
todays_date.isocalendar()[1]

Output:

43

https://en.wikipedia.org/wiki/ISO_week_date

Measuring Time Span with Timedelta Objects
Often, we may want to measure a span of time, or a duration, using Python datetime. We

can do this with its built-in timedelta class. A timedelta object represents the amount

of time between two dates or times. We can use this to measure time spans, or manipulate

dates or times by adding and subtracting from them, etc.

By default a timedelta object has all parameters set to zero. Let’s create a new timedelta

object that’s two weeks long and see how that looks:
#import datetime

from datetime import timedelta

create timedelta object with difference of 2 weeks

d = timedelta(weeks=2)

print(d)

print(type(d))

print(d.days)

Output:

14 days, 0:00:00 <class 'datetime.timedelta'> 14

Note that we can get our time duration in days by using the timedelta class

attribute .days. As we can see in its documentation, we can also get this time duration

in seconds or microseconds.

Let’s create another timedelta duration to get a bit more practice:
year = timedelta(days=365)

print(year)

Output:
365 days, 0:00:00

Now let’s start doing using timedelta objects together with datetime objects to do some

math! Specifically, let’s add a few diffeent time durations to the current time and date to

see what date it will be after 15 days, what date it was two weeks ago.

To do this, we can use the + or - operators to add or subtract the timedelta object to/from

a datetime object. The result will be the datetime object plus or minus the duration of

time specified in our timedelta object. Cool, right?

(Note: in the code below, it’s October 25 at 11:12 AM; your results will differ depending

on when you run the code since we’re getting our datetime object using

the .now() function).

https://docs.python.org/2/library/datetime.html#timedelta-objects

#import datetime

from datetime import datetime, timedelta

get current time

now = datetime.now()

print ("Today's date: ", str(now))

#add 15 days to current date

future_date_after_15days = now + timedelta(days = 15)

print('Date after 15 days: ', future_date_after_15days)

#subtract 2 weeks from current date

two_weeks_ago = now - timedelta(weeks = 2)

print('Date two weeks ago: ', two_weeks_ago)

print('two_weeks_ago object type: ', type(two_weeks_ago))

Output:

Today's date: 2019-10-25 11:12:24.863308 Date after 15 days: 2019-11-09 11:12:24.863308 Date

two weeks ago: 2019-10-11 11:12:24.863308 two_weeks_ago object type: <class

'datetime.datetime'>

Note that the output of these mathematical operations is still a datetime object.

Find the Difference Between Two Dates and

Times
Similar to what we did above, we can also subtract one date from another date to find the

timespan between them using datetime.

Because the result of this math is a duration, the object produced when we subtract one

date from another will be a timedelta object.

Here, we’ll create two date objects (remeber, these work the same as datetime objects,

they just don’t include time data) and subtract one from the other to find the duration:
import datetime

from datetime import date

Create two dates

date1 = date(2008, 8, 18)

date2 = date(2008, 8, 10)

Difference between two dates

delta = date2 - date1

print("Difference: ", delta.days)

print('delta object type: ', type(delta))

Output:

Difference: -8 delta object type: <class 'datetime.timedelta'>

Above, we used only dates for the sake of clarity, but we can do the same thing

with datetime objects to get a more precise measurement that includes hours, minutes, and

seconds as well:

import datetime

from datetime import datetime

create two dates with year, month, day, hour, minute, and second

date1 = datetime(2017, 6, 21, 18, 25, 30)

date2 = datetime(2017, 5, 16, 8, 21, 10)

Difference between two dates

diff = date1-date2

print("Difference: ", diff)

Output:

Difference: 36 days, 10:04:20

Formatting Dates: More on strftime() and

strptime()
We touched briefly on strftime() and strptime() earlier, but let’s take a closer look

at these methods, as they’re often important for data analysis work in Python.

strptime() is the method we used before, and you’ll recall that it can turn a date and

time that’s formatted as a text string into a datetime object, in the following format:
time.strptime(string, format)

Note that it takes two arguments:

• string − the time in string format that we want to convert

• format − the specific formatting of the time in the string, so that

strptime() can parse it correctly

Let’s try converting a different kind of date string this time. This site is a really useful

reference for finding the formatting codes needed to help strptime() interpret our

string input.
import datetime

from datetime import datetime

date_string = "1 August, 2019"

format date

date_object = datetime.strptime(date_string, "%d %B, %Y")

print("date_object: ", date_object)

Output:

date_object: 2019-08-01 00:00:00

Now let’s do something a bit more advanced to practice everything we’ve learned so far!

We’ll start with a date in string format, convert it to a datetime object, and look at a couple

different ways of formatting it (dd/mm and mm/dd).

Then, sticking with the mm/dd formatting, we’ll convert it into a Unix timestamp. Then

we’ll convert it back into a datetime object, and convert that back into strings using a

few different strftime patterns to control the output:

http://strftime.org/
http://strftime.org/

import datetime

from datetime import datetime

dt_string = "12/11/2018 09:15:32"

Considering date is in dd/mm/yyyy format

dt_object1 = datetime.strptime(dt_string, "%d/%m/%Y %H:%M:%S")

print("dt_object1:", dt_object1)

Considering date is in mm/dd/yyyy format

dt_object2 = datetime.strptime(dt_string, "%m/%d/%Y %H:%M:%S")

print("dt_object2:", dt_object2)

Convert dt_object2 to Unix Timestamp

timestamp = datetime.timestamp(dt_object2)

print('Unix Timestamp: ', timestamp)

Convert back into datetime

date_time = datetime.fromtimestamp(timestamp)

d = date_time.strftime("%c")

print("Output 1:", d)

d = date_time.strftime("%x")

print("Output 2:", d)

d = date_time.strftime("%X")

print("Output 3:", d)

Output:

dt_object1: 2018-11-12 09:15:32 dt_object2: 2018-12-11 09:15:32 Unix Timestamp: 1544537732.0

Output 1: Tue Dec 11 09:15:32 2018 Output 2: 12/11/18 Output 3: 09:15:32

Here’s an image you can save with a cheat sheet for common, useful strptime and strftime

patterns:

Let’s get a little more practice using these:
current date and time

now = datetime.now()

get year from date

year = now.strftime("%Y")

print("Year:", year)

get month from date

month = now.strftime("%m")

print("Month;", month)

get day from date

day = now.strftime("%d")

print("Day:", day)

format time in HH:MM:SS

time = now.strftime("%H:%M:%S")

print("Time:", time)

format date

date_time = now.strftime("%m/%d/%Y, %H:%M:%S")

print("Date and Time:",date_time)

Output:

Year: 2019 Month; 10 Day: 25 Time: 11:56:41 Date and Time: 10/25/2019, 11:56:41

Handling Timezones
Working with dates and times in Pythin can get even more complicated when timezones

get involved. Thankfully, the pytz module exists to help us deal with cross-timezone

conversions. It also handles the daylight savings time in locations that use that.

We can use the localize function to add a time zone location to a Python datetime

object. Then we can use the function astimezone() to convert the existing local time

zone into any other time zone we specify (it takes the time zone we want to convert into

as an argument).

For example:
import timezone from pytz module

from pytz import timezone

Create timezone US/Eastern

east = timezone('US/Eastern')

Localize date

loc_dt = east.localize(datetime(2011, 11, 2, 7, 27, 0))

print(loc_dt)

Convert localized date into Asia/Kolkata timezone

kolkata = timezone("Asia/Kolkata")

print(loc_dt.astimezone(kolkata))

Convert localized date into Australia/Sydney timezone

au_tz = timezone('Australia/Sydney')

print(loc_dt.astimezone(au_tz))

Output:

2011-11-02 07:27:00-04:00 2011-11-02 16:57:00+05:30 2011-11-02 22:27:00+11:00

This module can help make life simpler when working with data sets that include multiple

different time zones.

Working with pandas Datetime Objects
Data scientists love pandas for many reasons. One of them is that it contains extensive

capabilities and features for working with time series data. Much like datetime itself,

pandas has both datetime and timedelta objects for specifying dates and times and

durations, respectively.

We can convert date, time, and duration text strings into pandas Datetime objects using

these functions:

• to_datetime(): Converts string dates and times into Python

datetime objects.

• to_timedelta(): Finds differences in times in terms of days, hours,

minutes, and seconds.

And as we’ll see, these functions are actually quite good at converting strings to Python

datetime objects by detecting their format automatically, without needing us to define it

using strftime patterns.

Let’s look at a quick example:
import pandas module as pd

import pandas as pd

create date object using to_datetime() function

date = pd.to_datetime("8th of sep, 2019")

print(date)

Output:

2019-09-08 00:00:00

Note that even though we gave it a string with some complicating factors like a “th” and

“sep” rather than “Sep.” or “September”, pandas was able to correctly parse the string and

return a formatted date.

We can also use pandas (and some of its affiliated numpy functionality) to create date

ranges automatically as pandas Series. Below, for example, we create a series of twelve

dates starting from the day we defined above. Then we create a different series of dates

starting from a predefined date using pd.date_range():
Create date series using numpy and to_timedelta() function

date_series = date + pd.to_timedelta(np.arange(12), 'D')

print(date_series)

Create date series using date_range() function

date_series = pd.date_range('08/10/2019', periods = 12, freq ='D')

print(date_series)

Output:

DatetimeIndex(['2019-09-08', '2019-09-09', '2019-09-10', '2019-09-11', '2019-09-12',

'2019-09-13', '2019-09-14', '2019-09-15', '2019-09-16', '2019-09-17', '2019-09-18', '2019-

09-19'], dtype='datetime64[ns]', freq=None) DatetimeIndex(['2019-08-10', '2019-08-11',

'2019-08-12', '2019-08-13', '2019-08-14', '2019-08-15', '2019-08-16', '2019-08-17',

'2019-08-18', '2019-08-19', '2019-08-20', '2019-08-21'], dtype='datetime64[ns]', freq='D')

Get Year, Month, Day, Hour, Minute in pandas
We can easily get year, month, day, hour, or minute from dates in a column of a pandas

dataframe using dt attributes for all columns. For example, we can

use df['date'].dt.year to extract only the year from a pandas column that includes

the full date.

To explore this, let’s make a quick DataFrame using one of the Series we created above:
Create a DataFrame with one column date

df = pd.DataFrame()

df['date'] = date_series df.head()

Output:

Now, let’s create separate columns for each element of the date by using the relevant Python

datetime (accessed with dt) attributes:

Extract year, month, day, hour, and minute. Assign all these date component

to new column.

df['year'] = df['date'].dt.year

df['month'] = df['date'].dt.month

df['day'] = df['date'].dt.day

df['hour'] = df['date'].dt.hour

df['minute'] = df['date'].dt.minute

df.head()

Output:

Get Weekday and Day of Year
Pandas is also capable of getting other elements, like the day of the week and the day of

the year, from its datetime objects. Again, we can use dt attributes to do this. Note that

here, as in Python generally, the week starts on Monday at index 0, so day of the week 5

is Saturday.
get Weekday and Day of Year. Assign all these date component to new column.

df['weekday'] = df['date'].dt.weekday

df['day_name'] = df['date'].dt.weekday_name

df['dayofyear'] = df['date'].dt.dayofyear

df.head()

Output:

Convert Date Object into DataFrame Index
We can also use pandas to make a datetime column into the index of our DataFrame. This

can be very helpful for tasks like exploratory data visualization, because matplotlib will

recognize that the DataFrame index is a time series and plot the data accordingly.

To do this, all we have to do is redefine df.index:
Assign date column to dataframe index

df.index = df.date

df.head()

Output:

Conclusion
In this tutorial, we’ve taken a deep dive into Python datetime, and also done some work

with pandas and the calendar module. We’ve covered a lot, but remember: the best way

to learn something is by actually writing code yourself!

